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Abstract – Tikhonov regularization is applied to the inversion
of  EEG potentials.  The discrete model of the inversion
problem results from an analytic technique providing
information about extended intracranial distributions, with
separate current source and sink positions.  A three-layered
concentric sphere model is used for representing head
geometry.  The selected regularization parameter is the
minimizer of the product of the norm of the Tikhonov
regularized solution and the norm of the corresponding
residual. The simulations performed indicate that this
regularization parameter selection method is more robust than
the empirical Composite REsidual and Smoothing Operator
approach, in cases where only gaussian measurement noise
exists in the discrete inverse model equation. Therefore the
minimum product criterion can be used in real Evoked
Potentials’ data inversions, for the creation of brain electrical
activity tomographic images, when the amount of noise present
in the measured data is unknown.
Keywords – EEG Inverse problem, Evoked Potentials,
Tikhonov Regularization, Minimum-Product Criterion

I.  INTRODUCTION
 

Discrete ill-posed problems arise in many natural
sciences applications [1].  A discrete linear model equation
of the following form has to be solved:

                                       A.X = Y (1)

where K is a mxn matrix.  The problem is ill posed in the
sense that small variation in the data matrix Y may lead to
arbitrarily large changes in the solution.  This is reflected in
the ill conditioning of K.  If (1) is solved using the singular
value decomposition (SVD) method, then the contribution
of the small singular values will result in magnifying the
noise present in Y.  Therefore a regularization of the
problem is required in order to filter out the influence of the
noise. 

Tikhonov regularization is commonly used in inverse
electromagnetic problems.  The regularization parameter,
which controls the amount of filtering introduced by
regularization, is selected using appropriate criteria such as
the Composite REsidual and Smoothing Operator (CRESO)
[2], the Generalized Cross-Validation (GCV) [3] and the L-
curve [4-6].  Recently a minimum-product approach has
been proposed for the selection of the regularization
parameter [7], closely related to the L-curve approach.  It is
based on the minimization of the product of the norm of the
regularized solution and the norm of the corresponding
residual. Applications have been presented in the fields of
electrocardiography and electroencephalography [8-10]. 

In previous studies a novel Brain Electrical Tomography
method was presented, for solving the EEG inverse
problem, primarily used in inverting late low-frequency
Evoked Potentials to current distribution maps inside the
brain [11-15].  The method provides information about
extended current source distributions in widespread brain
regions.  This characteristic of the method is due to the
electric field analysis used, which enables the observation
of separated and distant current sources and sinks.  The
analytical equations of the inverse electromagnetic problem
are stated using Green’s functions and then discretized.

The present work aimed at studying the quality of inverse
solutions provided by the Brain Electrical Tomography
method, based on simulated head surface potentials using
the minimum-product approach for selecting the Tikhonov
regularization parameter, in comparison to the CRESO
approach.

II.  METHODOLOGY

The forward problem has been previously solved through
an analytical formulation that enables the differentiation of
intracranial positive and negative current source activity,
using a three-layered concentric spherical head model [11].
Simulated head potentials Voli, resulting from a known
initial distribution XINIT, are computed at m finite points ri,
i=1,...,m.  For solving the inverse problem the brain region
supposed active is divided into n small voxels ku∆ ,with
centres at rk, carrying an unknown average volume source
current density 

KJρ , k=1,...,n.  The inversion problem
equation can be stated in matrix form as in (1), where
Y=[Voli], i=1,...,m, X=[xk], xk=

KJρ ku∆ , k=1,...,n,

A=[aik], aik=G3(ri,rk) and G3 is the known Green function
of the problem.

In the zero-order Tikhonov regularization the following
functional is minimized [16]:

                          M
t
(X) = ||A.X-Y||

2
+t||X||

2
(2)

The regularized solution to (1) is given by:

                           X(t) = (Α
Τ.Α+tΙ)

-1.Α
Τ.Y (3)

In order to find the optimum value t
OPT 

, which gives the
solution Χ(t) closest to X

INIT
, we used, according to the

minimum product criterion, the value t
P
 that minimizes the

product:
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                                P(t) = ||X||||A.X-Y|| (4)

Alternatively the CRESO regularization parameter t
CRE

might be used, determined as the smallest value of t>0 that
results in a local maximum of the function:

                         C(t) = ||Χ(t)||
2
 + 2t

dt
d

||Χ(t)||
2 

(5)

The performance of the inversion technique is checked by
computing a set of critical parameters, including the relative
error RE(t)=||X(t)-X

INIT
||/||X

INIT
||, the residual RD(t)=||A.X-Y||

and the “mean absolute percent potential error”

ME(t)={ ∑
=

m

1i
| (yi-<ai,X(t)>)x100/yi|}/m, where ai=(ai1,...,ain)

is the ith line of matrix A and <ai,X(t)> is the inner product
of vectors ai and X(t).  Parameters RD and ME reflect the
accuracy by which the algorithm solves (1).

III.  RESULTS AND DISCUSSION

The model used in the inversion process had shell radii
r1=8.8cm, r2=9.7cm, r3=10.0cm, shell conductances

1σ = 3σ =0.3S/m, σ 2 =0.0042S/m. It was m=120, n=60 and
the condition number for matrix A was 1115.  The
investigated source region was restricted to a two-
dimensional spherical shell described by 0< θ <3600,
0< ϕ <800 and rs=8.3cm, corresponding to the outer layer of
the cortex.  Since both sources and sinks are positioned in
this shell the investigated current flow is tangential to the
spherical border surface, reflecting mainly sulcal cortical
activity. 

In Table I we present the values of the performance
parameters for the Tikhonov regularization technique, for
t=t

OPT
 and t=t

P
, with X

INIT
 given in Fig.1(a), when increasing

amounts of gaussian noise were added to the noiseless
voltage data A.X

INIT
.  In Fig.2 we present the plots of RE(t)

and P(t), for the various noise levels.  As can be seen, the
minimum-product criterion provides a solution Χ(t

P
), which

reconstructs X
INIT

 similarly to the reconstruction provided
by the optimum Tikhonov solution Χ(t

OPT
), as reflected by

the relation between RE(t
P
) and RE(t

OPT
)=min{RE(t)}.  It

should be noted that the CRESO criterion failed to provide
a value t

CRE
, since the function C(t) did not present local

maxima. 
In the present work there was no correlated noise in (1).

It is already known that if only correlated noise exists in the
discrete model equation, then most of the methods used for
locating an appropriate t ≈ t

OPT
, such as the CRESO

criterion, GCV, L-curve corner, as well as the minimum-
product criterion fail [5,6,10]. The main finding of the
inverse problem simulations performed in the present work
is that the minimum-product criterion tends to be more
robust in detecting a regularization parameter than the
CRESO criterion, even when only gaussian noise is present

TABLE  I
INVERSION TECHNIQUE PERFORMANCE PARAMETERS

FOR SIMULATED EEG DATA

Noise
level
(%)

RE RD (nV) ME

t=t
OPT

=3 x 10-2 0.038 9.3 0.36
0.5

t=t
P
=2.5 x 10-3 0.040 9.0 0.37

t=t
OPT

=4.5 x 10-3 0.063 16.9 0.53
1

t=t
P
=9 x 10-3 0.066 16.5 0.52

t=t
OPT

=6.5 x 10-1 0.282 98.1 4.21
5

t=t
P
=3 x 10-1 0.300 91.2 3.99

t=t
OPT

=1.5 x 100 0.412 199.8 8.60
10

t=t
P
=3 x 100 0.440 220.7 9.20

in the data. Taking into account that Algebraic
Reconstruction Techniques (ART) algorithms, which are an
alternative method for solving (1), require at least an
approximate knowledge of the noise level present in the
measurements [15], the application of the minimum-product
criterion enhances the probability to create reliable brain
electrical activity tomographic images, when the amount of
noise present in the measured data is unknown.

A final cautionary remark has to be made concerning a
problem existing in all the reconstructions tested in this
work, apparent also from Fig.1(b), i.e. that the reconstructed
distributions tend to be smeared and extended replicas of
the initial distribution.  This is a well-known phenomenon
in the inverse EEG problem and is due to the use of L2-
norm solution algorithms [17]. In cases when the underlying
cortical electrical activity is suspected to present a highly
“spiky” profile, then the distribution to reconstruct may not
be recovered using any of the L2-norm solution methods,
but may instead require the use of L1-norm methods. This
stresses the utility of any prior available information on
brain structure and function, in order to discard
mathematical solutions, which do not reflect real brain
phenomena.
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 (a) (b)

Fig. 1. Brain electrical activity on a two-dimensional spherical layer (0< ϕ <3600, 0< ϑ <600) positioned at r=8.7 cm, in nanoAmperes. Current source
amplitudes smaller than 5 nanoAmperes were omitted for clarity.  (a) Initial current distribution X

INIT
, (b) Tikhonov solution using the t  value indicated

by the minimum product criterion, i.e. Χ(t
P
). 10% gaussian noise was added to the simulated potential data. Each dot represents the planar projection of

the center of a voxel of the investigated brain region.

Fig. 2. Evolution of the relative error RE (left) and the product PT (right) as a function of the regularization parameter t,
 for the various gaussian noise levels. PT is expressed in Volts
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